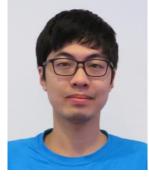


Gluon PDFs


Outline

- § Motivations
- § A first exploratory study
- In collaboration with Yi-Bo Yang, Zhoyou Fan, Adam Anthony and Keh-Fei Liu

Fan, Yang, et al, Phys.Rev.Lett. 121, 242001 (2018)

§ USQCD proposal & plans

Parton Distribution Functions

§ PDFs are universal quark/gluon distributions of nucleon

Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...)

Electron Ion Collider: The Next QCD Frontier

Imaging of the proton

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

EIC White Paper, 1212.1701

Global Analysis

§ Experiments cover diverse kinematics of parton variables

of PDFs

➢ Global analysis takes advantage of all data sets

Theory
Input
Global Analysis

Exp't Input

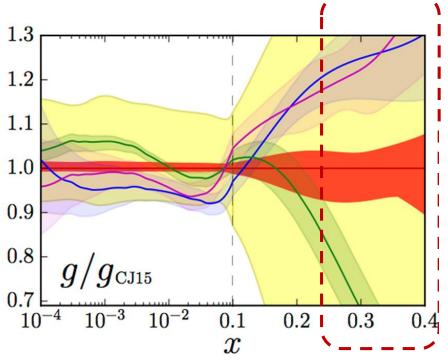
§ Some choices made for the analysis

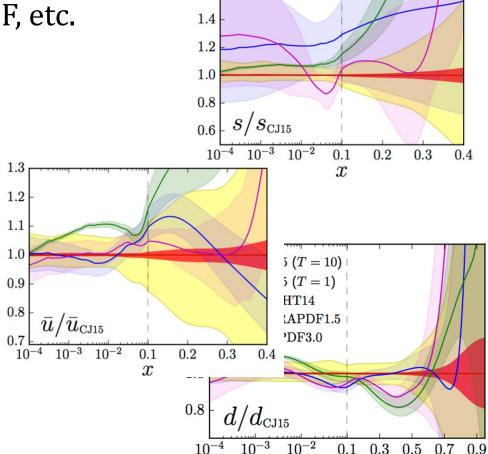
- > Choice of data sets and kinematic cuts
- \sim Strong coupling constant $\alpha_s(M_Z)$
- How to parametrize the distribution

$$xf(x,\mu_0) = a_0 x^{a_1} (1-x)^{a_2} P(x)$$

Assumptions imposed

SU(3) flavor symmetry, charge symmetry, strange and sea distributions


$$s = \bar{s} = \kappa (\bar{u} + \bar{d})$$

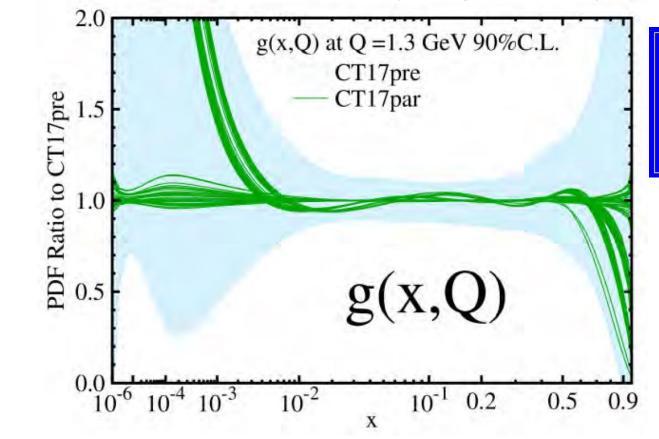


Global Analysis

§ Discrepancies appear when data is scarce

§ Many groups have tackled the analysis

0.3


 $0.5 \quad 0.7$

1.6

CTEQ-JLAB https://www.jlab.org/theory/cj/

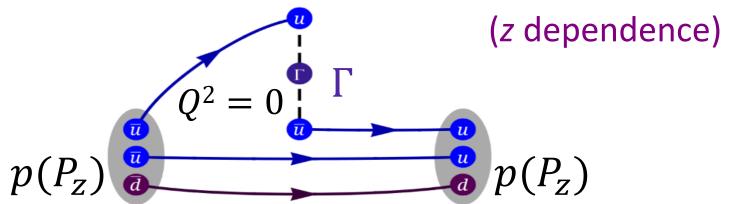
Global Analysis

- § CT18: sample of various nonperturbative parametrizations
- § No data to constrain very large or very small x

CTEQ

CTEQ-TEA (Slide by C. P. Yuan @DIS2019)

What can we do on the lattice?



LaMET in a Nutshell

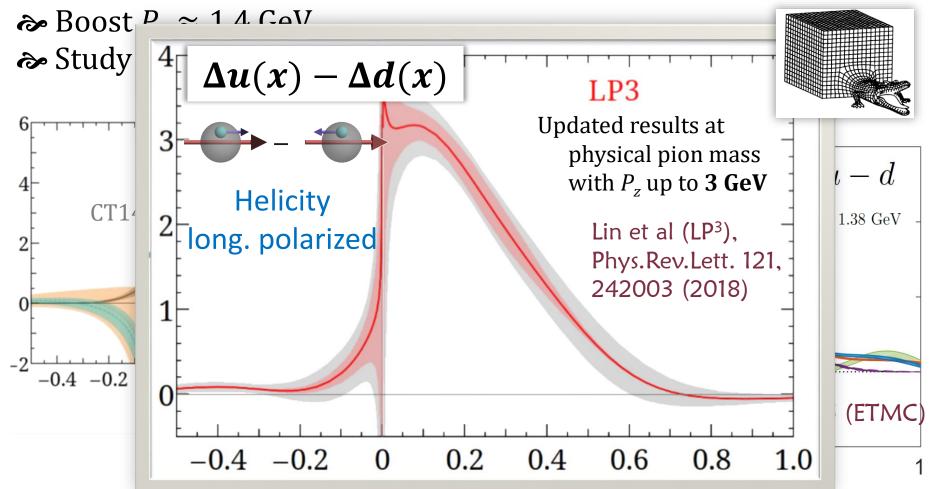
Steps for LaMET

1) Calculate nucleon matrix elements on the lattice

2) Compute quasi-distribution via

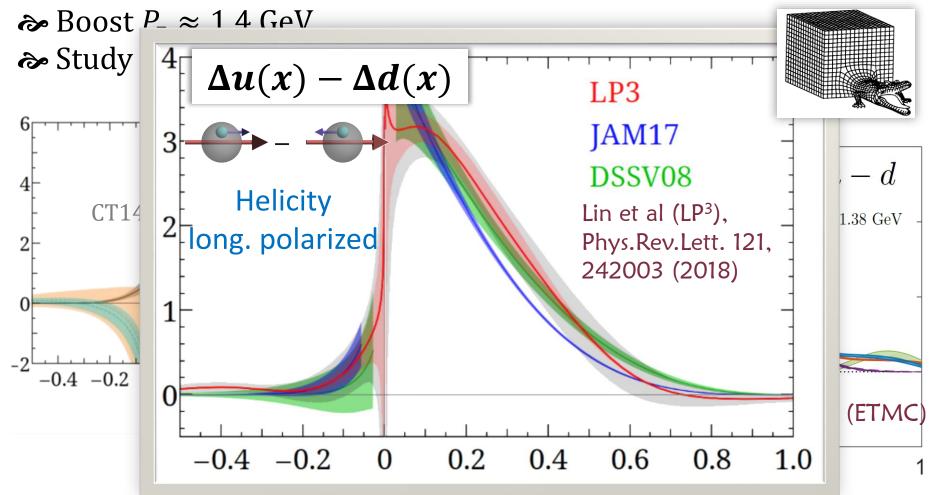
$$\tilde{q}(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-izk_z} \left\langle P \left| \overline{\psi}(z) \right| \sum \exp\left(-ig \int_0^z dz' A_z(z')\right) \psi(0) \left| P \right\rangle \right\rangle$$

3) Recover true distribution (take $P_z \rightarrow \infty$ limit)


$$\tilde{\mathbf{q}}(\mathbf{x}, \boldsymbol{\mu}, P_{\mathbf{z}}) = \int_{-\infty}^{\infty} \frac{dy}{|y|} Z\left(\frac{x}{y}, \frac{\mu}{P_{\mathbf{z}}}\right) \mathbf{q}(\mathbf{y}, \boldsymbol{\mu}) + \mathcal{O}(M_N^2/P_z^2) + \left(\Lambda_{\mathrm{QCD}}^2/P_z^2\right)$$

X. Xiong et al., 1310.7471; J.-W. Chen et al, 1603.06664

Some Reasonable Results


§ Exciting! Two collaborations' results at physical pion mass

Some Reasonable Results

§ Exciting! Two collaborations' results at physical pion mass

Numerical Setup

§ Calculations carried out with valence overlap fermions on RBC N_f = 2+1 DWF gauge configurations with

$$L^3 \times T = 24^3 \times 64$$

$$a = 0.1105(3) \text{ fm}$$

$$m_{\pi}^{sea} = 330 \text{ MeV}$$

§ For the nucleon two-point function:

- ➢ Valence quark mass about the strange quark mass (the corresponding pion mass is 678 MeV)
- ➢ Counting independent smeared point sources, the statistics used for these grid-source measurements is

$$203 \times 4 \times 32 \times 8 = 207,872$$

Gluon Operators

§ Lattice MEs of unpolarized gluon quasi-PDF

$$\widetilde{H}(z, P_z) = \langle P | O_3(z) | P \rangle$$

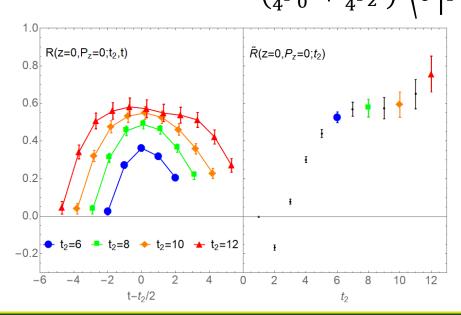
$$O_3(z) = \frac{1}{P_0} O(F_\mu^z, F^{z\mu}; z)$$

where the operator $O(F_1, F_2; z) = F_1(z)U(z, 0)F_2(0)$.

§ Better definitions should subtract the trace term

$$\begin{split} O_0(z) &= \frac{P_0}{\frac{3}{4}P_0^2 + \frac{1}{4}P_z^2} (O\left(F_\mu^t, F^{\mu t}; z\right) - \frac{1}{4}g^{tt}O(F_\nu^\mu, F_\mu^\nu; z)) \\ O_1(z) &= \frac{1}{P_z}O(F_\mu^t, F^{z\mu}; z)) \\ O_2(z) &= \frac{P_0}{\frac{1}{4}P_0^2 + \frac{3}{4}P_z^2} (O\left(F_\mu^z, F^{\mu z}; z\right) - \frac{1}{4}g^{zz}O(F_\nu^\mu, F_\mu^\nu; z)) \end{split}$$

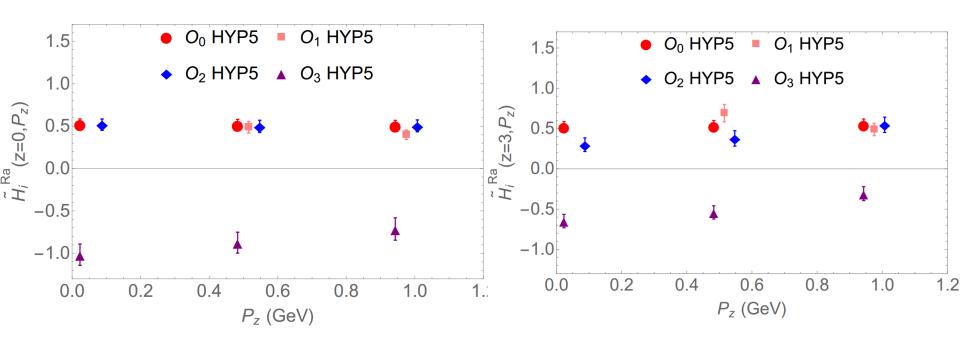
§ Gluon momentum fraction


$$\langle x \rangle_g = \widetilde{H}(z = 0, P_z)$$

Getting the Ground-State ME

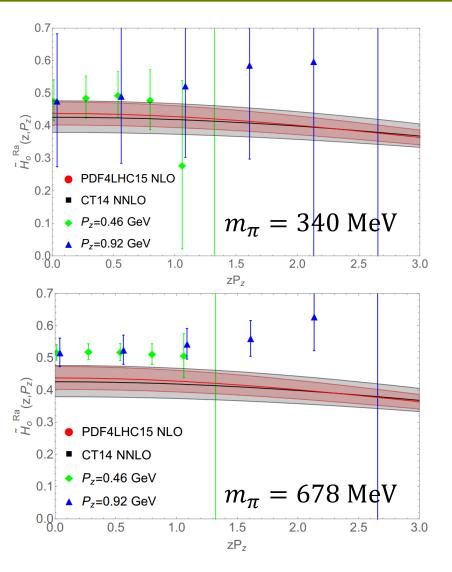
§ Bare gluon nucleon matrix element can be obtained from the derivative of the summed ratio as

$$\sum_{0 < t < t_{\text{sep}}} R(z, P_z; t_{\text{sep}}, t) - \sum_{0 < t < t_{\text{sep}} - 1} R(z, P_z; t_{\text{sep}} - 1, t) = \widetilde{H}_g(z, P_z) + \mathcal{O}(e^{\Delta m t_{\text{sep}}})$$
where $R(z, P_z; t_2, t) \equiv \frac{P_0 \left\langle 0 \left| \Gamma^e \int d^3 y \, e^{-iyP} \chi(\vec{y}, t_2) O_0(z) \, \chi\left(\vec{0}, 0\right) \right| \, 0\right\rangle}{\left(\frac{3}{4} P_0^2 + \frac{1}{4} P_z^2\right) \left\langle 0 \left| \Gamma^e \int d^3 y e^{-iy_3 P_3} \chi(\vec{y}, t_2) \, \chi\left(\vec{0}, 0\right) \right| \, 0\right\rangle}$


Ratio $R(z, P_z; t_{\text{sep}}, t)$ and derivative of the summed ratio $\tilde{R}(z, P_z; t_{\text{sep}})$ for the glue operator $O_0(z)$

Numerical Results

§ The "ratio renormalized" gluon quasi-PDF matrix element


$$\tilde{H}_0^{Ra}(z, P_z, \mu) = \frac{\tilde{H}_0^{\overline{MS}}(0, 0, \mu)}{\tilde{H}_0(z, 0)} \tilde{H}_0(z, P_z)$$

$$\widetilde{H}^{Ra}(z=0,P_z,\mu)=\langle x\rangle_q$$
 in $\overline{\rm MS}$ at 2 GeV

Numerical Results

§ Unpolarized gluon quasi-PDF

$$\widetilde{H}^{Ra}(z, P_z, \mu) = \int dx \ e^{ixzP^z} x \widetilde{g}(x, P_z, \mu)$$

§ For unpolarized gluon PDF,

$$H(\omega,\mu) = \int dx \ e^{ix\omega} x g(x,\mu)$$

§ With renorm., quasi-PDF ME agrees with FT of pheno. PDF

§ Further improvement needs larger P_z with mom. smearing

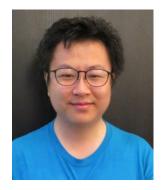
Key Issues

- § Noise is the main problem here at larger zP_z
- § Larger P_z needs smaller lattice spacing
 - \sim Minimization of potential $(aP_z)^n$ error
- Finer time resolution to extract ground-state signal
- § We propose calculation using a = 0.06 fm ($a^{-1} \approx 3.4$ GeV) HISQ 310-MeV pion lattice
 - > Thanks to MILC collaboration for sharing these configurations
 - ➤ Will stay at light/strange unitary points (with a PQ point around 450 MeV)
- Ask time to generate tons of 2pt correlators and gluon loops
- § Explore improvements in operators and other techniques, such as *cluster-decomposition error reduction (CDER) technique* K. Liu, et al PRD96, 114504(2017)

Gluon PDF

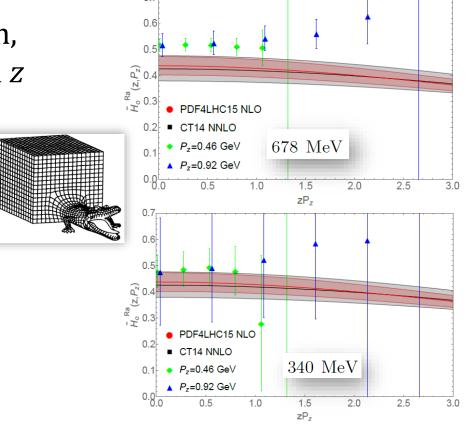
§ Pioneering first glimpse into gluon PDF using LaMET

➤ Lattice details: overlap/2+1DWF, 0.16fm, 340-MeV sea pion mass


Study strange/light-quark

Promising results using coordinate-space comparison, but signal does not go far in z

Hard numerical problem to be solved



Zhouyou Fan

Yi-Bo Yang

Fan, Yang et al, Phys.Rev.Lett. 121, 242001 (2018)

